

LE NUMÉRIOUE CODAGE D'UNE IMAGE MATRICIELLE

Conditions :	Travail seul ou en binôme; durée 1h
Matériel :	 PC sous Ubuntu avec les logiciels Geany, Bless, Pinta, Gimp et Libre Office Writer ou sous Windows avec les logiciels Notepad++, HxD, Paint.net et Libre Office Writer
Documents :	 le sujet du TD le cours sur le codage des images matricielles

1. Édition d'une image noir et blanc au format PBM

Le format **PBM** (Portable BitMap) est l'un des plus simples pour coder une image matricielle en noir & blanc. Un fichier au format PBM est un fichier en ASCII qui se compose comme suit :

- les caractères P1, suivis d'un retour à la ligne ou d'un espace ;
 - la largeur de l'image en nombre de pixels, en décimal, suivie d'un retour à la ligne ou d'un espace :
 - la hauteur de l'image en nombre de pixels, en décimal, suivie d'un retour à la ligne ou d'un espace :
 - la liste des pixels, ligne par ligne, de haut en bas et de gauche à droite (les retours à la ligne et les espaces sont ignorés dans cette partie).

Aucune ligne ne doit dépasser 70 caractères et toutes les lignes commençant par le caractère # sont des commentaires ignorés.

- Lancer l'éditeur Geany ou Notepad++ et taper le texte de l'exemple ci-dessus. Enregistrer le fichier avec l'extension pbm.
- Ouvrir le fichier créé avec un visualiseur d'image et vérifier le résultat obtenu.
- Créer avec Geany ou Notepad++ un fichier PBM réalisant l'image ci-contre de taille 20 x 20 pixels. Vérifier votre image avec un visualiseur d'image et faire valider par le professeur.

Validation Prof :

P1

10 10

000000000

0011111100 0110000110

010000010

010000010

010000010

010000010

0110000110 0011111100

000000000

Mon premier fichier PBM : cercle

2. Édition d'une image couleur au format PPM

Le format PPM (Portable PixMap) ressemble beaucoup à un fichier PBM ; c'est un fichier ASCII qui se compose :

- des caractères P3, suivis d'un retour à la ligne ou d'un espace ;
- la largeur de l'image en nombre de pixels, en décimal, suivie d'un retour à la ligne ou d'un espace ;
- la hauteur de l'image en nombre de pixels, en décimal, suivie d'un retour à la ligne ou d'un espace ;
- la valeur maximale utilisée pour exprimer l'intensité des couleurs, par exemple 255 ;
- la liste des valeurs des couleurs, trois par pixel, dans l'ordre rouge, vert, bleu, ligne par ligne, de haut en bas et de gauche à droite, séparées par des retours à la ligne ou des espaces.

Comme en PBM, aucune ligne ne doit dépasser 70 caractères et toutes les lignes commencant par le caractère # sont des commentaires ignorés.

Créer avec l'éditeur Geany ou Notepad++ un fichier PPM réalisant l'image ci-contre (drapeau bleu blanc rouge) de taille 12 x 12 pixels. Vérifier votre image avec un visualiseur d'image et faire valider par le professeur.

u t		

Validation Prof :

3. Compression d'une image

- Télécharger l'image *phare.bmp* disponible à l'adresse 192.168.11.1.
- Ouvrir l'image avec Gimp ou Paint.net. Retrouver les informations ci-dessous (menu Image / Propriétés de l'image).

🛞 🗊 Nouvelle image				
Taille de la nouvelle image				
Largeur :	10	*	pixels	
Hauteur :	10	*	pixels	
Ar	nuler		Valider	

Fichier	taille du fichier (kio)	dimensions en pixels	taille en cm	résolution
phare.bmp				

- Calculer la résolution en ppp de l'image à partir des dimensions en pixels et de la taille en cm de l'image. Comparer à celle donnée par Gimp.
- Calculer la taille du fichier bitMap en RVB, comparer à la taille du fichier.
- Modifier le nombre de couleurs (menu Image / Mode / Couleurs indexées) de l'image comme dans le tableau cidessous . Enregistrer chaque fichier (menu Fichier / Exporter). Compléter alors le tableau.

Fichier	Nombre de pixels	Nombre maxi de couleurs	Nombre de bits par pixel	Taille du fichier en octets	Qualité perçue de l'image	Rapport taille fichier / taille minimum*
phare.bmp		16 millions				
phrare1.bmp		256				
phare2.bmp		16				
phare3.bmp		2				

* ne remplissez cette colonne qu'à la fin, après avoir repéré le plus petit des fichiers, et arrondissez le résultat.

• Que pouvez -vous dire du lien entre les valeurs obtenues pour la dernière colonne et le nombre de bits par pixel ?

Nous allons comparer la **compression** de l'image 256 couleurs, fichier **phare1.bmp**, en utilisant plusieurs méthodes de compression.

- Ouvrir le fichier phare1.bmp.
- Enregistrez l'image en JPEG (choisir un % de compression de 90). Complétez le tableau.

Fichier	Taille en octets	taux de compression	Qualité perçue de l'image
phare1.bmp non compressé			
phare1_jpeg.jpg compression jpeg			

• Percevez-vous une différence de qualité entre l'image JPEG et l'original au format BMP ?