

Commande d'un moteur à courant continu

NOM :		CLASSE :
PRÉNOM :		
Condition :	Travail individuel ; durée 3 heures	
Matériel :	 un ordinateur avec le logiciel Arduino installé, oscilloscope, alimentation une maquette Arduino Uno avec platine de câblage, un shield moteur. divers composants : potentiomètre, resistance 1 k, diode, transistor, moteur CC, ULN fils 	
Documents :	 le sujet du TP le cours sur la carte Arduino et sa programmation les datasheets des composants sur le site 192.168.11.1 	

1. Présentation

Pour piloter la propulsion d'une voiture télécommandée (la communication sans fil n'est pas étudiée), on veut piloter la vitesse d'un moteur CC (à courant continu) à l'aide d'une carte Arduino.

Problématique 1 : Le moteur a t-il des caractéristiques courant/tension compatible avec la carte Arduino ?

Problématique 2 : Sur quel paramètre faut-il jouer pour modifier la vitesse du moteur ? Comment créer la variation de ce paramètre en étant compatible avec la solution 1 ?

2. Problématique 1 : Caractéristiques du moteur

✓ Le modèle du moteur est le 201-G. A l'aide de la documentation technique (voir site), relever la tension minimale et la tension maximale accepté par ce moteur : Faire valider par le professeur.

Umin =

Umax =

Validation prof :

✓ Mesurer et relever à l'aide d'un multimètre, dans la plage d'alimentation Umin à Umax, la valeur de l'intensité maximum consommée (à vide) :

Tension d'alimentation du moteur :

Intensité nécessaire au moteur (à vide) :

 Relever sur la documentation technique de la carte arduino UNO (voir cours Arduino), la tension disponible en sortie de la carte et l'intensité maxi :

Tension de fonctionnement :

Intensité maxi sur une sortie :.....

 Comparer les valeurs du moteur à celle de la carte ARDUINO UNO et conclure sur la possibilité de brancher directement ou pas le moteur en sortie de carte Arduino.

Conclusion :

3. Piloter un moteur à courant continu avec Arduino (mode ON OFF)

Pour permettre de piloter le moteur, on va utiliser un transistor Q1 NPN 2N2222A.

Q1 est un **transistor bipolaire NPN qui fonctionnent en commutation**, soit comme un interrupteur.

- ✓ Quel doit être le niveau de la broche D9 de l'Arduino pour permettre le fonctionnement du moteur ?
- ✔ Quel doit être le niveau de la broche D9 de l'Arduino pour permettre l'arrêt du moteur ?.....
- ✓ S'agit-il d'une sortie ou d'une entrée de l'Arduino, définir le pinMode pour cette broche :
- ✓ S'agit-il d'une information analogique ou logique :
- ✓ Compléter ci-dessous le programme de commande du moteur.

void setup () { pinMode ();//définir la broche utilisée Serial.begin(9600);//paramétrer la com moniteur série } void loop () {); // mettre en marche le moteur digitalWrite (Serial.println(); // écrire la valeur affectée à la broche delay (); //attendre 10s avant de changer l'instruction digitalWrite (); // arrêter le moteur Serial.println(); // écrire la valeur affectée à la broche); //attendre 10s avant de changer l'instruction delay (}

- Une diode de roue libre D1 permet d'éviter les surintensités qui pourraient détériorer le transistor Q1. Repérer D1 sur le schéma ci-dessous.
- ✓ La diode de roue libre intervient dans le cas où Q1 est équivalent à un interrupteur ouvert. Pour que le courant passe dans la diode, le moteur doit être : (cocher la bonne case).

□ générateur ou □ récepteur

- Réaliser à l'aide des composants fournis le câblage ci-dessous sur la platine Sparkfun : Faire valider par le professeur.
- ✓ Tester votre programme. Faire valider par le professeur.

Validation prof :

Pour réaliser l'interface entre un circuit logique ou microprocesseur et un circuit de puissance on peut utiliser un circuit intégré ULN2803 qui est un réseau de 8 transistors Darlington. En utilisant le site référence 192.168.11.1, consulter la documentation de l'ULN2803 et relever les caractéristiques de tension d'entrée et les caractéristiques maxi, de sortie.

U input = Umax output = Imax output =

✓ Implanter le composant en supprimant le transistor et la diode de roue libre comme suit :

VCC 6V

Problématique 2 : faire varier la vitesse du moteur

U1

3E 4E 5E

D9 C

 Câbler votre moteur de nouveau en direct sur une alimentation variable. Faire varier la tension <u>dans les</u> limites de la plage autorisée pour le moteur. Que constatez-vous sur le moteur ?

U1 GND (broche 9 de l'uln2803)

GND à relier avec la masse de l'arduino

.....

Le transistor se comporte comme un interrupteur tout ou rien ; un signal impulsionnel alimente le moteur.
 Sur quel paramètre du signal impulsionnel doit-on jouer pour faire « varier » la tension moyenne du signal et donc la tension d'alimentation du moteur :

Validation prof :

- En utilisant un potentiomètre $100K\Omega$, une entrée analogique de l'Arduino et ce qui vous semblera utile, piloter la vitesse de rotation du moteur à l'aide du potentiomètre.
 - ✔ Pour écrire le programme vous pouvez utiliser la commande map de l'Arduino (cf aide en ligne si besoin).
 - ✓ Enregistrer sous « commandemoteur ».

Piloter un moteur CC à vitesse variable avec Arduino

✔ Réaliser le câblage sur la platine Sparkfun et tester.

6. Utilisation du shield moteur avec Arduino

L'objectif est de réaliser le pilotage moteur à l'aide du shield moteur qui permet de s'affranchir du transistor (ou de l'ULN2803) et de la diode de roue libre.

- Hors tension décâbler le montage précédent <u>sauf le potentiomètre</u>. Connecter le shield moteur puis relier le point milieu du potentiomètre sur la <u>broche A2</u>.
- ✓ Connecter directement le moteur sur les broches + et A du shield moteur .
- ✓ Connecter l'alimentation du moteur directement sur Vin et GND du shield moteur.
- Modifier le programme précédent « commandemoteur » pour libérer la broche 9 et utiliser la broche 3 PWM A pour la commande moteur. Remplacer aussi dans le programme l'utilisation de A0 par A2.
- ✓ Tester et faire valider.

5

- ✓ Réaliser les modifications pour piloter le moteur, cette fois-ci, brancher en B.
- ✓ En utilisant le datasheet du shield moteur (<u>http://arduino.cc/en/Main/ArduinoMotorShieldR3</u>) piloter aussi le sens de rotation du moteur.
- ✔ Quelles broches doivent être utilisées pour piloter un moteur branché en B :
- ✔ Quelle valeur sur DIRB permet d'avoir un sens de rotation horaire du moteur :

- ✔ Quand a t-on la vitesse maxi du moteur ?
- ✓ Quand a t-on la vitesse mini du moteur ?
- ✓ Comment s'appelle en français ce mode de pilotage ?
- La carte Arduino dispose de sorties PWM ~, écrire un programme permettant de générer un signal PWM sur la sortie D9 de l'Arduino. Vous connecterez un oscilloscope sur cette sortie et vous ferez varier la PWM. Redessiner ci-dessous l'allure du signal PWM pour 3 cas différents.

Connecter la sortie D9 de l'Arduino comme précédemment et visualiser le comportement du moteur.

Broche du milieu = point milieu du potentiomètre

Validation prof :

Validation prof :

Validation prof :